Introduction to Machine Learning

Fabien Baradel PhD Student - INSA Lyon fabienbaradel.github.io

What is your definition of Machine Learning ?

Definition: Machine Learning

Statictics? Maths? Computer Science? Big Data? Artificial Intelligence?

« Field of study that gives computers the ability to learn without being explicitly programmed » Arthur Samuel, 1959

Automatic discover of patterns in data by a computer

Different from rule-based methods

Brief history of Machine Learning and Al

Timeline Al

https://neurovenge.antonomase.fr

What do we want to learn?

Supervised Learning

Object classification

$$f(.)$$
 \rightarrow cat

Human Pose estimation

Unsupervised Learning

Image Generation

Future forecasting

What do we want to learn?

Reinforcement Learning

Go board game

Video Understanding

Causal Reasoning Spatio-Temporal Interactions

Strong AI

Specific task Memorization Shift between train and test Adaptation to new task

Real World Applications

Tesla

Google

Criteo

Industry

Huge investment R&D Centers USA - Canada - China - Europe (France!)

Supervised Learning

Regression

Problem Statement

$$D = \{(x_i, y_i)\}_{i=1}^N$$
$$y = f(x)$$

Solution

Solution

Model

$$f_{w,b}(x) = wx + b$$
 Prediction
 $y = f_{w,b}(x)$

Loss function
$$(f_{w,b}(x_i) - y_i)^2$$

Objective
$$\min_{w,b} \frac{1}{N} \sum_{i=1}^{N} (f_{w,b}(x_i) - y_i)^2$$

Closed-form solution

We set
$$\beta = \begin{bmatrix} b & w \end{bmatrix}$$
 $X = \begin{bmatrix} 1 & x_1 \\ \cdots & \cdots \\ 1 & x_N \end{bmatrix}$ $Y = \begin{bmatrix} y_1 \\ \cdots \\ y_N \end{bmatrix}$

Optimization

$$\min_{\beta} ||\beta X - y||^2$$

Optimal solution $\beta^* =$

$$\beta^* = \hat{\beta} = (X^T X)^{-1} X^T y$$

Pros and Cons

 $\hat{\beta} = (X^T X)^{-1} X^T y$

We can add statistical hypothesis Robust modelling

Model checking Invertibility Difficult to compute in some case

Linear regression with Gradient Descent

$$J(w,b) = \frac{1}{N} \sum_{i=1}^{N} (f_{w,b}(x_i) - y_i)^2$$

Optimization problem

Minimize a loss function using a certain model

Find the parameters which are minimizing the loss function

Gradient Descent

f (x) = nonlinear function of x

Linear regression with GD

Cost function

$$J(w,b) = \frac{1}{N} \sum_{i=1}^{N} (f_{w,b}(x_i) - y_i)^2$$

Compute derivatives

$$\frac{\partial J}{\partial w}(w,b) = \frac{1}{N} \sum_{i=1}^{N} - 2x_i(y_i - (wx_i + b))$$

$$\frac{\partial J}{\partial b}(w,b) = \frac{1}{N}\sum_{i=1}^{N} -2(y_i - (wx_i + b))$$

And update parameters iteratively

Goal: minimization of a function Random initialization of parameters At time t, gradient = slope fo the function Iterative process Updating parameters in the positive direction with a learning rate Repeat until convergence

Linear Regression with GD

$$J(w,b) = \frac{1}{N} \sum_{i=1}^{N} (f_{w,b}(x_i) - y_i)^2$$

- Init \hat{w}, \hat{b} randomly
- Choose a learning rate η
- for t in $1 \dots T$:
 - Update parameters

$$\hat{w} \leftarrow \hat{w} - \eta \frac{\partial J}{\partial w}(\hat{w}, \hat{b})$$
$$\hat{b} \leftarrow \hat{b} - \eta \frac{\partial J}{\partial b}(\hat{w}, \hat{b})$$

Linear Regression with Stochastic GD

$$J(w,b) = \frac{1}{N} \sum_{i=1}^{N} (f_{w,b}(x_i) - y_i)^2$$

- Init \hat{w}, \hat{b} randomly
- Choose a learning rate η
- for t in $1 \dots T$:
 - Sample some points from the data
 - Update parameters

$$\hat{w} \leftarrow \hat{w} - \eta \frac{\partial J}{\partial w} (\hat{w}, \hat{b})_D$$
$$\hat{b} \leftarrow \hat{b} - \eta \frac{\partial J}{\partial b} (\hat{w}, \hat{b})_D$$

Only on a subset D of the dataset

Exercise

Implementing Gradient Descent LinearRegression: Closed-form vs GD vs SGD

