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Gradient Descent and Machine Learing

Machine Learning (ML) approaches need to estimate parameters using an optimization technics. Gradient
Descent (GD) algorithm is the most widely used optimization technic nowadays for solving ML problems. Today
we will discover how does it work and how is it used in practice.

Exercise 1: Understanding Gradient Descent

What is the purpose of Gradient Descent? GD is the easiest approach for solving optimization problem. The
only one hypothesis needed is to be able to compute gradients of the parameters we want to optimize. We want
to find the value θ∗ which is given the minimal value J(θ) where in our case J(θ) = (θ + 1)2. This could be
defined by the following optimization problem θ∗ = argmin

θ
J(θ). For the function (θ + 1)2 we can compute by

hand the solution i.e θ∗ = −1. However in many real world scenarios this solution cannot be found analytically
and we need to estimate this quantity using optimization technic such as the Gradient Descent algorithm.

1. Create a function J(theta_i) which is implementing the function J(θ) described above What is the value
of J(4) ?

2. Generate data point between -10 and 10 with a step of 0.01 between each data point and store it into a
list called list_theta. What is the length of list_theta? Note: Use np.arange() and then list() to
make sure you are creating a list.

3. Compute all the values J(θ) using values from the list theta. Store the values into a list called
list_J_theta.

4. Plot list_theta vs list_J_theta. When do we reach the minimum?

5. Create a function dJ_dtheta(x_i) which is computing the gradient ∂J
∂θ (xi). What is the value of

dJ_theta(0) ?

6. Create a function gradient_descent(theta_0, lr, nb_iters, dJ_dtheta, J) which returns the so-
lution of argmin

θ
f(θ). theta_0, lr, nb_iters, dJ_dtheta, J correspond respectively to the initial

value of θ, the learning rate, the number of iterations allowed for solving the problem, the gradient of θ
and the function J(.). What is the solution θ̂ found by gradient descent to our problem? Note: assume
that x_0, lr, nb_iters, dJ_dtheta, J = -7, 0.1, 100, dJ_dtheta, J while debugging.

7. Update your function gradient_descent for printing the optimization path (i.e. print the line between
θt and θt+1 and saving the figure at the end of the optimization process).

8. Assuming that you are setting nb_iters equals to 100 what is the solution θ̂ when varying nb_iters in
[-8, -1, 7] and lr in [0.1, 0.01, 0.001, -0.01, 0.8, 1.01]. Does the estimated solution always
the same? What are pros and cons about these hyperparameters and GD in general?

9. Now assume the function J(θ) = sin(2θ + 1), what is the solution θ̂ given by GD?

Exercise 2: Simple Linear Regression with Gradient Descent

We want to estimate parameters of a simple linear regression (i.e. yi = wxi+b) by closed-form and GD. The loss

function on teh full dataset is defined by J(w, b) =
∑N
i=1((wxi + b)− yi)2. The optimization problem we want

to solve is min
w,b

J(w, b). We assume the following data generation process: Y ∼ wX + b+ ε where X ∼ U [20; 40]

and ε ∼ N (0, 1).

1. Generate N data points (xi, yi) using the data generation process given above and store them into list_x

vs list_y. Note: N = 100 and start by first generating {xi}N1 and then {yi}N1 . Do not forget to add
noise!

2. Plot the data points list_x vs list_y.
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3. Estimate parameters of the simple linear regression by closed-form. Note: first create X (ones + list_x)
and Y and then do the matrix multiplications step by step. Note: store these values into w_cf and b_cf.

4. Modify the distribution of the noise (e.g. ε ∼ N (0, 5)). How does it impact the estimated parameters?

5. Remove the noise from the data generation process. What are the values ŵ and b̂? And why?

6. Create a function predict(x,w,b) which is returning the estimated value ŷi for a data point xi. What
the value of predict(5,2,-1) ?

7. Plot the fitted line on the data points.

8. Create a function loss(list_x, list_y, w, b) which is computing the regression loss on the full
dataset. What is the value of loss([1], [3], 1, 2) ?

9. Create a function dl_dw(x, y, w, b) which is computing ∂l
∂w (w, b) on the single point (x, y). What the

values of dl_dw(2, 1, 0, 0) and dl_dw(2, 2, 0, 0) ?

10. Create a similar function dl_db(x, y, w, b) for computing the gradient ∂l
∂b on a single data point (x, y).

What the value of dl_db(4, -1, 0, 0) and dl_db(3, 3, 0, 0) ?

11. Implement a function update_w_and_b(list_x, list_x, w, b, lr) which is updating w and b accord-
ing to the gradient compute on the full data points. What is the output of the following command of
update_w_and_b([0], [3], 5, 3, 0.1) and why?

12. Estimate parameters of the simple linear regression by gradient descent from a random initialization of
w and b and with a learning rate equals to 0.001. Note: store these values into w_gd and b_gd.

13. Plot the fitted line on the data points and compared against the one estimated by closed-form.

14. In real world scenarios it takes a lot of time for computing gradients on the full dataset (e.g. millions of
examples). So we estimate gradients from a sample of the full data. This technic is called Stochastic Gra-
dient Descent. Modify your algorithm according to these approach. How are your estimated parameters
different compared to the Gradient Descent technic?

15. Repeat the Stochastic Gradient Descent algorithm. Do you find the same estimated parameters with the
same hyperparameters? Why?

16. Use the library scikit-learn for solving this problem using LinearRegression(). Do you find the same
estimated parameters?
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